PATTERNS IN NATURE: A MATHEMATICAL VIEW

Danilo Roccatano

School of Mathematics and Physics
droccatano@lincoln.ac.uk

The first words

Galileo Galilei
1564-1642

Philosophy is written in that great book which ever lies before our eyes - I mean the universe - but we cannot understand it if we do not first learn the language and grasp the symbols, in which it is written. This book is written in the mathematical language, and the symbols are triangles, circles and other geometrical figures, without whose help it is impossible to comprehend a single word of it; without which one wanders in vain through a dark labyrinth.

A home garden: the place where we are going to start

If you look at a garden, many objects before our eyes can be immediately recognised as human artefact and distinguished from natural forms.

Natural shapes are apparently more complex in their structure and surface but indeed they can be mathematically described.

Shape in Nature

The golden ratio

Euclid, in The Elements, says that the

 line $A B$ is divided in extreme and mean ratio by C if $A B: A C=A C: C B$.1

$$
x^{2}-x-1=0
$$

The golden ratio

$$
\begin{gathered}
x_{1,2}=\frac{1 \pm \sqrt{1+4}}{2}=\frac{1 \pm \sqrt{5}}{2} \\
x=\frac{1+\sqrt{5}}{2}
\end{gathered}
$$

= $1 \cdot 61803398874989484820458683436563811772030917980576$

$$
\begin{aligned}
& 28621354486227052604628189024497072072041893911374 \\
& 84754088075386891752126633862223536931793180060766 \\
& 72635443338908659593958290563832266131992829026788 \\
& 06752087668925017116962070322210432162695486262963 \\
& 13614438149758701220340805887954454749246185695364 \\
& 86444924104432077134494704956584678850987433944221 \\
& 25448770664780915884607499887124007652170575179788 \\
& 34166256249407589069704000281210427621771117778053 \\
& 15317141011704666599146697987317613560067087480710
\end{aligned}
$$

The golden ratio

The symbol used to represent the golden ratio was proposed by the

ϕmathematician Mark Barr in honour of Phidias, the Greek sculptor, painter and one of the architects of the Parthenon.

The golden ratio

ϕ is an algebraic number and also irrational

(sequence A001622 in the The On-Line Encyclopedia of Integer Sequences!))

Simple proof

$$
\begin{aligned}
& \phi=\frac{1+\sqrt{5}}{2} \\
& 2 \phi-1=\sqrt{5}
\end{aligned}
$$

The golden ratio

It can be also expressed using form starting from:
Substitute the solution: $(\phi)^{2}-(\phi)-1=0$

$$
\begin{aligned}
& \phi=1+\frac{1}{\phi} \\
& \phi=1+\frac{1}{1+\frac{1}{\phi}} \\
& \phi=1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\phi}}} \\
& \phi=1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\phi}}}}
\end{aligned}
$$

The golden ratio

Continued fraction representation
1
$\phi=1+$

$$
\phi=[1 ; 1,1,1,1,1,1,1,1,1,1,1, \ldots]
$$

Continued root representation

$$
\phi=\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{\cdots}}}}}
$$

Geometry and golden ratio

Pentagonal symmetry is common in nature

In the pentagon we find again ϕ

Golden ratio in 3d Space Icosahedron

The golden ratio appear in this polyhedron in numerous way.
Regular faces: 20
Vertices: 12
Edges 30

The 12 vertices have coordinates that are permutations of this set: $(0, \pm 1, \pm \phi)$
$(\pm 1, \pm \phi, 0)$
$(\pm \phi, 0, \pm 1)$

$$
V=\frac{5}{6} \phi^{2}=\frac{5}{12}(3+\sqrt{5}) \approx 2.18
$$

Dodecahedron is the dual polyhedron of icosahedron

and the dodecahedron is even more stuffed of golden ratio relation!

Golden ratio in 3d Space

 Icosahedron in Nature
POLIO VIRUS

Circogonia icosahedra,
a species of Radiolaria,

Adenovirus

shaped like a regular icosahedron

Zika virus

Geometry and golden ratio

Three golden rectangles

The golden spiral is a special logarithm spiral

Image source: https://watercolorpainting.com/composition-golden-spiral/

Logarithm Spiral in Nature

Spira mirabilis of Jacob Bernoulli (1655-1705)

http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibnat.html

Fibonacci Numbers

（sequence A000045 in the The On－Line Encyclopedia of Integer Sequences）

The Fibonacci numbers give the number of pairs of rabbits months after a single pair begins breeding（and newly born bunnies are assumed to begin breeding when they are two months old），as first described by Leonardo of Pisa（also known as Fibonacci）in his book Liber Abaci．

$$
\begin{aligned}
& F_{0}=1 \\
& F_{1}=1 \\
& F_{k}=F_{k-2}+F_{k-1}
\end{aligned}
$$

Leonardo Fibonacci 1100 AD

Some interesting properties of the Fibonacci Sequence

The sum of the first n number is give by the value of the number $(n+1)-1$

```
\(0,1,1,2,3,5, \quad 8,13\)
    \(n, n+1, n+2\)
\(0+1+1+2+3+5=12 \rightarrow(n+2)-1=13-1\)
```

$0,1,1,2,3,5,8,13,21,34,55,89$
$0+1+1+2+3+5+8+13+21+34=88$

Fibonacci numbers and the golden ratio

$$
\begin{aligned}
& 1 / 1=1 \\
& 2 / 1=2 \\
& 3 / 2=1 \cdot 5 \\
& 5 / 3=1 \cdot 666 \ldots \\
& 8 / 5=1 \cdot 6 \\
& 13 / 8=1 \cdot 625 \\
& 21 / 13=1 \cdot 61538 \ldots
\end{aligned}
$$

Powers of the golden number

$$
\begin{aligned}
& \phi^{2}=\phi+1 \\
& \phi^{3}=\phi+\phi^{2}=2 \phi+1 \\
& \phi^{4}=2 \phi^{2}+\phi=3 \phi+2 \\
& \cdots \\
& \phi^{n}=F_{k} \phi+F_{k-1}
\end{aligned}
$$

http://www.mathstat.dal.ca/fibonacci/

The Fibonacci Association

 Official Website
 esosirch pmpesaix, ahslienging frollersh, and new proske of odd idese.

Informutionakeyt italogaz
Publications of the Fibonecei Association

- Ina lemaccullaiderly

Fibonacci in Nature

3

8

5

13

Fibonacci vs Golden spiral

Image source http://yozh.org/2010/11/11/nature-by-numbers/

FRACTALS EVERYWHERE

The Fern plant

The property showed in the previous slide is called
"self- similarity under scaling" and it is the key to describe
the complexity of Nature...

At the beginning of the last century mathematicians started to explore the self similarity by exploring the properties of peculiar geometric objects

Giuseppe Peano (1858-1932)

David Hilbert (1862-1943)

George Cantor (1845-1918)

Niels Fabian Helge von Koch (1870-924)

Hilbert showed how we can construct a curve that fully covers a plane

David Hilbert (1862-1943)

(a)

(β)

(y)

If increase the number of square making them smaller and smaller, we notice that the Hilbert's curve seems to cover the plane. However, by its construct it takes for each square only a tiny amount of the possible points.

What is the dimension of the curve? One or two ?

Other simple models of self-similar curves were introduced by

Georg Cantor

and
Niels Fabian Helge von Koch

Koch curve

If we use a triangle the island of

Koch (or is it a
snowflake?), which would have of course finite area, but...
if you wanted to walk
along its coastline you
would never finish, since
its length is infinite!

All these objects, which are characterised by «self - similarity under scaling» and generally have non integer dimension

are called FRACTALS.

To understand them we need a new kind of Geometry called Fractal Geometry, that was first introduced by the French mathematician Benoit Mandelbrot in 1970.

He come across to a "mysterious mathematical island" located in the imaginary space now called
the Mandelbrot set where the self-similarity goes beyond the imagination.

Mandelbrot in his famous book

"The Fractal Geometry of Nature", in the late 1970's also discuss about the coastline
of another famous island ...

The Fractal Geometry of Nature

The Fractal Geometry of Nature

The Fractal Geometry in Art

Autumn Rhythm, 1950, oil on canvas, 266.7 cm by 525.8 cm Jackson Pollock (1912-1956), American painter, major figure of abstract expressionist movement

The Fractal Geometry in Art

The Lorenz_Atsractor_(Strange-Atractor)

How do we calculate a fractal dimension
Let us divide the space in which our object is embedded into "boxes" of side Λ and count the number of "boxes" $N(\Lambda)$, which contain at least one point of the object.

The dimension of our object is the unique exponent D, for which the "measure" of our set $M=N(\lambda) \lambda^{D}$ is finite, i.e

$$
D=\frac{\log N(\lambda)}{\log (1 / \lambda)} \quad \text { in the limit } \Lambda \rightarrow 0 \text { and } N(\Lambda) \rightarrow \text { infinity. }
$$

How to Calculate the Fractal Index using ImageJ

Download ImageJ/Fiji from: https://imagej.net/Fiji

[MAGE]

```
ABOUT DOWNLOADS LEARN DEVELOP NEWS EVENTS STATUS HELP
```

Page Duscurssion biensource Hotary
FiJI

Fiji is an imbge processing puckuge a "butteries-included" distribution of IrnageJ, bundling a lut of plugins which fucilitute scientific image unalysis.

- For uxera - Fiji is easy tas inxtall and hos art autornatic: upklate furnction, burndlex a lot of plugins and uffers comprthensive documentution.
- For developers - Fiji is an open source project hosted in a Git version control repository, with access to the souroe code of ell internals, libraries and plugins, and eases the development and scripting of plugins.

Contents [hsde]
1 Downluads
2 License
3 Contributing
1 Publication

Overriese

UELDg Hyl
Failume Fiji Frajrsis
$Y_{\mathrm{iji}} \mu_{\mathrm{u}}$ inivilima
Liake

Dereloping 「iii
 [-]

Duildia; Fijip tram sourco
Developing Tiii
Curatuibuim ravitemenas
Sappotted ccerplikers

Moasura
Araysur - Par ticles...
Summarize
Distiloution...
Laber
Clear Result:
Set Measuraments...
Fole
(Tii lx Juxlij lurman.

Box Sizes: $2,3,4,6,8,12,16,32,64$Black Background

Dendritic deposit of

Calcium carbonate on the glass walls of a test tube

DIY A FRACTAL PLANET

Star Trek II: The Wrath of Khan (1982)

GENESIS D DEVICE

How to Build
a Fractal Planet:

Islands with mountains

How to Build a Fractal Planet:

Vegetation

Lindenmayer system or L-System

We can imitate nature by making pictures of real looking plants like Barnsley's fern......

Starting with an initial pattern
"close to the final
product can speed up the process very much..

Classic Readings

- Sir D'Arcy Wentworth Thompson On Growth and Form (1917)

- Mario Livio

The golden ratio (2002)

- Peitgen, Jürgens, Saupe

Chaos and Fractals New Frontiers of Science (1992)

The Last Words ...

For the harmony of the world is made manifest in Form and Number, and the heart and soul and all the poetry of Natural Philosophy are embodied in the concept of mathematical beauty.

- Sir D'Arcy Wentworth Thompson

On Growth and Form (1917), Epilogue, 778-9.

